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Abstract

A recurrent network of 21 linear integrate-and-fire (LIF) neurons
(14 excitatory; 7 inhibitory) connected by 60 spike-driven, excita-
tory, plastic synapses and 35 inhibitory synapses is implemented in
analog VLSI. The connectivity pattern is random and at a level of
30%. The synaptic efficacies have two stable values as long term
memory. Each neuron receives also an external afferent current.
We present “neuro-physiological” recordings of the collective cha-
racteristics of the network at frozen synaptic efficacies. Examining
spike rasters we show that in absence of synaptic couplings and for
constant external currents, the neurons spike in a regular fashion.
Keeping the excitatory part of the network isolated, as the strength
of the synapses rises the neuronal spiking becomes increasingly ir-
regular, as expressed in coefficient of variability (CV) of inter-spike
intervals (ISI). The rates are high, in absence of inhibition and
are well described by mean-field theory. Inhibition is then turned
on, the rates decrease; variability remains and population activity
fluctuations appear, as predicted by mean-field theory.

We conclude that the collective behavior of the pilot network pro-
duces distributed noise expressed in the ISI distribution, as would
be required to control slow stochastic learning, and that the ran-
dom connectivity acts to make the dynamics of the network noisy
even in the absence of noise in the external afferents.
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1 The neuron

The implemented LIF (Linear Integrate and Fire) neuron is a modified version of
the Mead neuron [1, 2]. The dynamics of the neuron’s depolarization V , is given
by:

dV

dt
= −β + I(t) (1)

where I is the total afferent current and β is a constant loss. These equations are
complemented by the constraint that V cannot go below 0, whatever its input.

The neuron linearly integrates the afferent current, with a constant leak β, and
emits a spike when V = θ; after τ0 (=50µs, the width of the spike) V is reset to
H . τ0 plays the role of an absolute refractory period, since, during the emission
of the spike, no current is injected in the neuron. In the implementation θ=1.4V;
H=0.5V.
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Figure 1: Single neuron response: A: Output rate vs drift (µ =< I > −β) for
three values of σ (dashed line: σ2 = 0, dotted line: σ2 = 0.025, solid line: σ2 = 0.05
in units of θ2/ms), theory [3]; B: CV vs µ for the same values of σ2 as in A; C:
Simulation of the evolution of the depolarization (Eq. 1) for Gaussian input cur-
rent with µ = 0.19 θ/ms, σ2 = 0.011 θ2/ms. The CV is 0.23. D: simulation for
µ = −0.096 θ/ms, σ2 = 0.26 θ2/ms. CV= 0.85. In both C and D the output rate
is 100Hz, H = 0.

Single neuron response to noisy input: When the afferent current I is drawn
from a Gaussian distribution with mean 〈I〉 and variance σ2, its spike emission rate,
ν(µ, σ), is [3]:

ν = Φ(µ, σ) =
[
τ0 +

σ2

2µ2

(
e

−2µθ

σ2 − e
−2µH

σ2

)
+

θ − H

µ

]−1

. (2)



It is depicted in Fig. 1A vs the drift µ (≡ 〈I〉 − β), for three values of σ. If σ=0,
the response is threshold-linear [4] (dashed curve): ν=0 , if 〈I〉 ≤ β; otherwise

ν =
(

θ − H

µ
+ τ0

)−1

. (3)

This would be the expected response if the neurons are decoupled and the afferent
current is noiseless. If noise is present in the afferent current, the rate vs the drift
becomes concave at low currents and the rate is non-zero even for negative drift.
In Fig. 1C,D we show the temporal evolution of the depolarization (simulated) of
the implemented neuron for positive and negative drift, and the output frequency
of the neuron as a function of the drift, for different values of σ. In Fig. 1B we
present the coefficient of variability CV, defined as:

CV =
√

< T 2 > − < T >2/ < T >

where T = 1/ν is the average time between two subsequent spikes emitted by the
neuron.

2 The network

The neurons are connected by spike-driven plastic synapses [5] between the
excitatory neurons and fixed valued (excitatory-inhibitory, inhibitory-excitatory,
inhibitory-inhibitory) synapses. In this report we concentrate on the collective pro-
perties of neurons, so all synapses are kept fixed and a detailed description of the
synapse is omitted. The connectivity in all directions is random and on average
each neuron is connected to 30% of the others.

In Fig.2 (left) the layout of the LANN21 (Learning Attractor Neural Network) is
shown; on the right the connectivity scheme and the chip I/O is illustrated.

Figure 2: The LANN21 chip: CMOS technology, 1.2µm; the core is 1.5 × 1.38
mm. Left: layout of the chip. In the topmost, central row the 14 excitatory neu-
rons, and the 7 inhibitory neurons are on the righmost column. The scattered
patches in the lower part of the chip are the 60 plastic, excitatory-to-excitatory



synapses. The other synapses are barely visible in the lower strip. Right: 4-way
connectivity scheme of the network: gray squares are existing synapses; each row
represents the “dendritic tree” of one neuron. Black squares indicate that there
are no self-interactions. Equal external stimulation current arrives within groups
indicated by pointed boxes on the left; spikes can be observed only for neurons with
an arrow down (10 excit, 5 inhib), spikes with arrows going out into the same Mux
box come out on the same pin and are then de-multiplexed.

Note that when all neurons in the network are excitatory and the stimulating current
is constant, the neurons must operate at positive drift, or no spike is emitted and
no noise generated.

If the number of neurons is large enough, and the firing probability of each neuron
is an independent random variable, the afferent current to each neuron is random,
and can be approximated by a Gaussian current [7, 3]. In particular, the average
of the current µ and its variance σ2 can be estimated by:

µ = cJν − β + Iext σ2 = cJ2ν

where c is the average number afferents, ν is the mean frequency of the afferent
neurons, J is the mean strength of the couplings, and Iext is the external afferent
current. This is a good approximation even in the case of LANN21, where the
number of afferents is rather low.

3 Methods – measuring efficacies

The existing synaptic efficacies are either zero or have another (fixed) value, whose
magnitude is externally regulated and is set by a host PC via a programmable
micro-processor based board. The actual values of the efficacies must be measured,
following their regulation. In LANN21 only the depolarization of one neuron is visi-
ble (neuron 0); this neuron has two afferent excitatory synapses, whose efficacy can
be directly measured by the jumps induced in the depolarization by pre-synaptic
spikes. We have adopted the following procedure to estimate all the synaptic effica-
cies: 1. All synapses are regulated, the external (constant) currents turned on and
spike rates and CVs are measured for all neurons. 2. All synapses are turned off
and the resulting rates provide a measurement of afferent mean currents, which are
composed of the external currents and the neuron linear decay. Since in absence of
interaction, the integration is linear, the mean afferent current µ to each neuron is
directly related to its mean spiking frequency ν (see Eq.3):

µ =< I > −β =
νθ

(1 − ντ0)

The contribution of the external current can be separated from the linear decay by
setting β = 0 and repeating the procedure. 3. Each of the four types of synapses
is turned on exclusively and rates and CVs are measured. 4. For each of the
four classes the single type of synaptic efficacy involved is varied in MF theory
until the computed rates match the measured rates. For example, to determine
the inhibitory-excitatory mean efficacy JI→E , all the other couplings are turned
off and the average rates are measured. The population of excitatory neurons
receive an extra inhibitory current with respect to case 2, and the mean frequency
νE is lowered. The estimate of JI→E should satisfy the following self consistency
equations:

νE = Φ(µE , σE)

µE = IE
ext − βE − cI→EJI→EνI , σ2

E = cI→EJ2
I→EνI



where νI and νE are the measured average rates of inhibitory and excitatory neurons
respectively, cI→E is the mean number of inhibitory afferents per excitatory neuron,
and IE

ext is the mean external afferent current, which has already been determined
in step 2.

After all four (average) efficacies are determined this way, MF is applied to the entire
network and the rates computed. Those are compared with the rates measured in
Step (1). This is a strong consistency check in addition to comparing the excitatory-
excitatory efficacy with the one measured directly on neuron 0.

It turns out that when the network does not synchronize the emission rates can be
obtained by a MF approach (despite the fact that the number of neurons is rather
low).
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Figure 3: Activity in excitatory network. Left: Spike rasters (0.5 second) for 10 exci-
tatory neurons (no inhibition) for three values of average synaptic efficacy (A:J = 0,
B:J = 0.07θ, C:J = 0.11θ) in units of the neural threshold (β=0.). Note that spike
rates of different neurons are quite different due to the random connectivity in the
network which results in a large variability in the number of afferent synapses among
neurons. Right: Average CV vs JE→E . The black circles correspond to the rasters
sets on the left. Rates are kept constant, as JE→E varies, by adjusting external
currents.

4 Results

4.1 Excitatory network

As synaptic efficacies are turned on, the incoming current to a neuron will include
the feedback spikes from other neurons in the network, over and above the (constant)
external current. For a disordered system (here due to the random connectivity)
spike trains become increasingly irregular. Even though the system is completely
deterministic, also on relatively long time scales spike trains cannot be distinguished
from noise. (See e.g. [6]). In Fig. 3 (left) we present 0.5 second spike rasters of
10 excitatory neurons of the network (in absence of inhibition) for three values of
the average excitatory synaptic efficacy. Fig. 3 (right) presents average CV vs the
(measured) synaptic efficacy. The excitatory efficacy is varied holding the average
neurons’ rate constant, by adjusting the afferent current. CV is increasing with the
efficacy as well as with increasing number of afferent synapses. Note that for weak



synapses the neurons emit quite regularly.

For not too high values of the synaptic efficacies (high Js tend to synchronize
the neurons’ firing and to break the basic hypotheses of the MF approach) we
compare observations with the predictions in the MF approximation. We made the
comparison for the parameters corresponding to the black points B and C in Fig.
3. For point B, MF: JE→E = 95.4 mV, measured JE→E is 102 ± 7 mV. For point
C, MF: JE→E = 138 mV, measured: 130 ± 21 mV. It is seen that even for such a
small network there is good agreement with MF predictions.

4.2 Inhibition included

Turning on the inhibition one can obtain neurons with small negative drift. Inhi-
bition lowers the neuronal drift and hence the rates. This is accompanied by an
increase of ISI variability, as measured by CV. It is a consequence of the fact that
the neurons move into their noise driven regime, where spikes are emitted due to
fluctuations (see e.g. Fig.1D). Fig. 4 presents two sets of raster plots of the 15
visible neurons (5 inhibitory at bottom) for the two sets of couplings in Table 1.

For strong couplings (upper part in Fig. 4), we would have to inject small exter-
nal currents, to avoid very high level of synchronization in the network; on the
other hand, working with very small currents (of the order of nA) is a source of
instabilities and needs fine tuning. We therefore inject equal, constant current into
excitatory neurons belonging to group A in Fig. 2 (they have common external
input), and no current into other neurons. High rates are provoked only in these 4
neurons, which in turn excite the other excitatory neurons as well as the inhibitory
ones. In this regime, the neurons exhibit high variability in their spiking times (the
average measured CV is 1.06 for the excitatory neurons that do not receive external
currents).

A typical weak coupling regime is shown in the lower part of Fig. 4. After estimating
the couplings following the procedure described in Section 3, the CV is calculated in
MF approximation. The measured average CV of all excitatory neurons is 0.35, the
MF prediction is 0.38 (for inhibitory neurons, measured CV: 0.13, MF: 0.14). For
the JE→E coupling, we could compare the MF estimate with the direct measurement
of the induced jumps in the depolarization of neuron 0; MF: 0.134 θ, measured:
0.135 θ. The measured average rates are: νE = 139Hz and νI = 199Hz; the MF
predictions are νE = 134Hz and νI = 199Hz.

Network couplings
JE→E JI→E JE→I JI→I

Strong couplings 0.235 0.168 0.14 0.06
Weak couplings 0.134 0.084 0.07 0.03

Table 1: Two sets of couplings for the network of Fig. 4. The values (in units of θ)
are estimated from MF as described in Section 3.

We conclude that the dynamics of the connected network generates (effective) noise
even in absence of noise in the afferent current and this noise can underpin slow
stochastic learning [5].
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Figure 4: Network with inhibitory neurons: 2 raster sets for 2 sets of synaptic
parameters (see Table 1). Only the 4 neurons corresponding to the 4 topmost rows
receive external current (equal and constant).
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