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Population dynamics of interacting spiking neurons
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A dynamical equation is derived for the spike emission gt of a homogeneous network of integrate-
and-fire(IF) neurons in a mean-field theoretical framework, where the activity of the single cell depends both
on the mean afferent currefthe “field” ) and on its fluctuations. Finite-size effects are taken into account, by
a stochastic extension of the dynamical equation forithéheir effect on the collective activity is studied in
detail. Conditions for the local stability of the collective activity are shown to be naturally and simply ex-
pressed in terms dthe slope of the single neuron, static, current-to-rate transfer function. In the framework
of the local analysis, we studied the spectral properties of the time-dependent collective activity of the finite
network in an asynchronous state; finite-size fluctuations act as an ongoing self-stimulation, which probes the
spectral structure of the system on a wide frequency range. The power spectruexiubits modes ranging
from very high frequencydepending on spike transmission delayshich are responsible for instability, to
oscillations at a few Hz, direct expression of the diffusion process describing the population dynamics. The
latter “diffusion” slow modes do not contribute to the stability conditions. Their characteristic times govern the
transient response of the network; these reaction times also exhibit a simple dependence on the slope of the
neuron transfer function. We speculate on the possible relevance of our results for the change in the charac-
teristic response time of a neural population during the learning process which shapes the synaptic couplings,
thereby affecting the slope of the transfer function. There is remarkable agreement of the theoretical predictions
with simulations of a network of IF neurons with a constant leakage term for the membrane potential.
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[. INTRODUCTION which the local stability conditions were derived for a homo-
geneous population of IF neurons, also incorporating the ef-
The mean-field approach to the analysis of recurrent netfects of a noisy afferent currefindependent of the network
works of spiking neurons dates back to the early 1970s; tactivity) through a Fokker-Planck formulation. Using an al-
put our work in perspective, we list a few relevant milestonegernative neuron modelthe “spike-response” neurgnan-
in this successful history, relevant to the subject of theother approach was built in R¢f7] to the mean-field dynam-
present papefl]: One early, seminal work was devoted to ics, via the construction of suitable kernels propagating in
the characterization of the frequency response of a homogeime the collective activity of a neural population. The theory
neous population of noninteracting integrate-and-fiiie) could accommodate dynamical synaptic currents. The effect
neurons in stationary conditior[®]. In Ref. [3], a wider of an absolute and/or relative refractory period, fluctuating
repertoire of dynamical behaviors emerges fromaanhoc  emission threshold, and a complex dynamical scenario, in-
dynamics introduced for the collective activity of interacting cluding asynchronous states and phase locking, was charac-
populations of neurons. Building on a well-establishedterized. The mean-field approach was further enriched in
knowledge of the stochastic dynamics of a single noiseRef.[8], taking into account the fluctuations in the afferent
driven IF neuron, the authors of R¢#] could formulate a currents self-consistently determined by the network recur-
static mean-field approach taking into account the fluctuatioment activity, including excitatory and inhibitory interacting
in the external afferent currents in a network context, thuspopulations and the effects of a Hebbian synaptic structure. A
opening the way to the theoretical description of low activityway to incorporate the finite size of the network as a correc-
states of interacting IF neurons with high interspike variabil-tion to the mean-field formulation was explored in Réf; a
ity. In a tour de force the author of Rdb] made an exten- “phase diagram” was derived in this work for an inhibitory
sive analysis of the mean-field dynamics of populations ohetwork, and the line of bifurcation from stable asynchro-
interacting IF neurons, incorporating dynamical synaptic curnous states to high-frequency oscillatory states was calcu-
rents and adaptation effectgia voltage-independent potas- lated by means of a perturbative treatment of a Fokker-
sium currenty fluctuations in the afferent currents were not Planck formulation. A spectral analysis was performed in
taken into account in Ref5]. A complementary analysis was Ref.[10] of the collective activity of a single population of
performed in Ref[6], not including adaptation effects, in (excitatory or inhibitory neurons of the “spike-response”
type, taking into account the finite size of the network in a
way similar to Ref[9], but without considering noisy cur-
*Electronic address: mattia@iss.infn.it rents.
"Electronic address: paolo.delgiudice@iss.infn.it With somewhat different motivations, an approach was
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proposed in Refl11] to the numerical solution of the above theoretical predictions and numerical simulations.
Fokker-Planck formulation of the network dynamics, which

involves expanding the Fokker-Planck operator onto a time- Il. A GENERAL APPROACH
dependent basis.

Motivated by a dynamical description of the mean-field
theory, we use a similar formalism which, complemented by A generic integrate-and-firdF) neuron can be fully de-
the appropriate “self-consistency” ingredients, allows us toscribed by the following dynamics of its membrane potential
formulate in closed form dynamical equations for the frac-V(t) (depolarizatioh
tion of neurons spiking per unit time(t) (the “collective .
activity” or “emissFi)on r%tg” of the neu(ra3l population in the V=1(V)+I(V.D/C, 2.9)
foll\c/JVv_vmg)_ln the presence of noise. . - wheref (V) is the deterministic drift towards a resting poten-

ith this approach, we could reproduce in a unified frameIial [f(V)= —V/r, leaky IF neuron:f(V)=— 3, constant
several key results of the works quoted above, but new qual i ' !

ative and guantiave fatres i emefeon an ap 70 I3 PeUOE (17, € 6 a0 cectue el
proximate solution of the dynamical equations fgra pecu- P : '

liar role emerges for the single neuron response propertieéncomlng spikes from the presynaptic neurons through the

this, in our view, is a step forward in the long-standing prob_o’endrltlc contacts, and can be adequately modeled, for a re-

lem of relating single neuron properties to the collective ac—aIIStIC number of presynaptic afferentsonnectivity, as a

tivity of interacting assemblies of neurofig,5.6.8,7. (i) superposition of stochastic, independent point processes.

Taking in due consideration the fact that neurons only comyvhen\./(t) CrOSSes a_threshp&l, _the'neur(_)n emits an action
otential(the spike with an infinitesimal time duration, and

municate with each other via spikes led us to reformulate th R
e depolarization is instantaneously reset to a value

way in which finite-size noise enters the Fokker-Planck de- Under reasonable assumptions. including the diffusion an-
scription of the collective dynamics; this generates additional roximation. the limit of a Iarpe nu;nber of sfferents and thg
features in the spectral content of the collective activity, withP ’ 9 ’

respect to those already observed in REEQ,9. (i) Our |ndep(ra]ndenc§| betv_veen the z_activities o;theﬁpresynaptic cells
formalism encompasses in a natural way the description Ol(fs\e/et gdetalnedddlscysstljonbm REI7]). i[ble afferent current
neural populations operating in aoise-dominated(sub- (. ) 1s well described by f”‘(poss' y nonstyanonaify
threshold regime, recognized to be relevant for the descrip—WIener process and the dynamics of the neuron’s membrane

tion of neural activity characterized by low emission ratespmenf“al,IS governed by the following nonlinear Langevin
and high variability in the interspike interval8,12,13. We equation:

show that a characteristic low-frequency behavior of the V=h(V,t)+o(V,HT (1) 2.2
population frequency response, and a peculiar hierarchy of ' ' ' ’

characteristic times of the population transient responsgpere vty is the total deterministic driffsum of f(V)
emerge.(iv) With a focus on the asynchronous collective nd the average afferent current w(V,1)

stateqwhich are widely recognized as representative of typi-_ ( ) _ 7
) NG : =(1(V,1)/C)]; a(V,t)=([1(V,t)/C—u(V,1)]%), the
cal cortical condition it turns out that the response times of size of current fluctuation, i.e., the variance of the afferent

the neural population to sharp variations in the input, beSideéurrent.F(t) is a 5-correlated(white) noise with zero mean

being strongly affected by noise, are remarkably sensitive tQ d uni : b d . ith
the intensity of the average synaptic couplings. This fore 2" unitary varlanc§§ ) above denotes averaging with re-
) spect to the probability distribution of the process at time

zzai?l\jvssai olhr;k"lgngiiz? ;:‘Oe(:elztseﬂgi:; ttgkeerr]esg ?:';Si?] Eﬁea The emission of a §p|k9 and the limits on the accessible
network. The asynchronous states provide a natural, fast Vé/_a!ues for the depolar|z§t|on can be taken |nt.o a(_:count.by

. : . ) o Suitable boundary conditions for the stochastic differential
hicle to propagate the information flow, as previously Su9'equation(2 2, as we discuss later in more details
gested in various contex{®,5,14,19 (see alsd16] for an e '
experimental estimate of the speed of processing in the vi-
sual cortex. B. The dynamics of a single neural population

In the first part of the paper, after briefly reviewing the  For a large homogeneous networkfnteracting IF neu-

“population density approach,” we illustrate the general for- rons, the mean-field approximati¢8] assumes the same sta-
malism that allows us to write a dynamical equation for thetistical propertiesu and o2 for the afferent currents to tHg
collective activity of a population of generic IF neurons. A cells. TheN depolarizations/ are considered a¥ indepen-
linearized analysis follows, which allows us to StUdy the |0-dent realizations of the stochastic proc@@)’ whose prop-
cal stability for the asynchronous states and the characteristigities are described by(ame-dependentprobability density
times of the transient network response. We then turn to thgnction (p.d.f) p(v,t) [18]. The above independence as-
analysis of the finite-size effects and the power spectral densymption(to be checkedx posteriori allows us to use the
S|ty Of the network aCt|V|ty In the Second pal’t we turn to apercentage Of neurons havn"gt) = [U,U+dv] as an esti_

specific example application of the general theory, studyingnate ofp(v,t)dv. The evolution ofp(v,t) is described by
the mean-field dynamics of a network of IF neurons withthe following Fokker-Planck equation:

constant leakage teritihe “linear” neuron studied in Ref.
[12]), and a detailed comparison is performed between the ap(v,t)=Lp(v,t), (2.3

A. Single neuron equation
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where L is the differential Fokker-Planck operator, which  In the mean-field approach, the infinitesimal moments of
takes the general form the afferent current are expressed as functions(tf[8,12],
now interpreted as the emission rate of presynaptic neurons,
L(v,t)=—d,A(v,t)+d2B(v, ). (2.4) P presynap

The A(v,t) term is the drift coefficient an®(v,t) is the plo )= plo,v)],

diffusion coefficient of the stochastic procésg). Equation
(2.3), with its boundary conditions, fully describes the popu-
lation dynamics. TheA and B coefficients can be derived
from Eq. (2.2 and are

a?(v,t)=c?[v,v(t)].

Closing this loop makes the Fokker-Planck equat{@rB)
nonlinear, because the infinitesimal moments depend on the

A(v,t)=1f(v)+ u(v,t)=h(v,t), emission ratev(t) and therefore on the system state, so that
L=L(p).
B(v,t)=30%v,t) We also mention that a population density approach is
viable also when the diffusion approximation is not valid
(see Refs[19,20). (see[21]).

Equation(2.3) can be regarded ascantinuity equation

p(v,t)=— %Sp(v 1), C. Eigenfunction analysis

The Fokker-Planck operat@®.4) has a set of eigenfunc-
tions and associated eigenvalues,

L|¢n>:)\n(t)|¢n>- (2.9

Defining the inner product

whereS,(v,t) is the net flux of realizationgor “probability
current”) crossing the leved at timet. Its explicit form is

Sp(v,t)=[A(v,t)—3,B(v,t) ]p(v,t).

The depolarization is assumed to vary betwegp, and 6,

including the possibility thab j,— —.
In particular, the fraction of realizations per unit time <¢|¢>:f P(v,t) (v, t)dv,
crossing the threshold, i.e., the average neuron emission
rate v(t) in the population, is given by the flux the adjoint operatot.*,
V()=S5,(0,1). (YL d)=(L" ¥l &), (2.10

act a rbing barrier such that . . . ~ .
6 acts as ambsorbing b Fsu a has eigenfunction/,,,) and eigenvaluex , that are in gen-

p(6,t)=0, (2.5  eral different from those of, becausé. is not Hermitian. In
the above expressions, the time dependence is implicitly due
and the emission rate becomes to the time dependence ¢f and o®>. The boundary condi-
tions for 4 and the expression fdr* can be derived from
v()=—B(v,1)d,p(v,t)|,= 4=~ 20%(v,1)3,P(v,1)],= 4. the boundary conditions for thé [19,11].
(2.6) Assuming ¢, is a complete set of eigenfunctions, the

boundary condition$2.5), (2.7), and(2.8) must be satisfied
by each¢,(v,t).

The following conditions on the eigenfunctiogg of L ™"
Nt t+AL) result:

NAt

An equivalent, operational definition of the population rate
for a finite numbem of neurons is

v(t)= lim

At-0 Un(0,1)Sg (0,)=n(H,1)S,, (6,t—10),

where M(t,t+At) is the total number of spikes emitted by

the population in the time intervat + At). o Pn(Umin, 1) =0,

Realizations crossing the threshold restart their random
walk from v=H, after a refractory period of inactivity, Oyihn(H T, 1) =0, ¢hn(H 1),
and this implies the following conservation of the net flux
Sy(v,t): assumingy,, and ¢, to be continuous functions in the inter-

val (U min,ﬁ).
Sp(0,t— TO):Sp(H+,t)—Sp(H_,t), (2.7 The adjoint operator is then given by

whereS,(H™,t)=lim, _=Sy(v,t). L™ (v,t)=A(v,1)d,+ B(v,t)d?

A reflecting barrier preventsV from going belowu ,,
and this implies a vanishing probability current through =[f(v)+ (0,019, +30%(v,1);, (.19
Umins

which is the evolution operator for the backward Kolmog-
So(Vmin,t) =0. (2.8 orov equation, completely equivalent to Eg.3).
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Equation(2.10 implies that eigenfunctions with different

eigenvalues are orthogonal; for the completeness assumpti
of the eigenfunctions of the Fokker-Planck operator,

|=; | pn)( il (212

both L andL* have the same eigenvalues(=X\,), and

PHYSICAL REVIEW E 66, 051917 (2002

When the mean driving force alone is not enough to make
dncross the threshold [ A(6,t)<0], so that a positive dif-
fusion term is necessary to have the emission of a spike, the
neurons are evolving in aoise-dominated, subthreshaie-
gime, whereas wheA(6,t)>0, the emission of an action
potential can occur also in the absence of noisy afferent cur-
rents, and the neurons are irdaft-dominated, suprathresh-
old regime of activity[8,23,12,9,18 The activity regime

with an appropriate normalization the two sets of eigemcunc_characterizes the statistical properties of the single neuron

tions are biorthonormal,

<¢n|¢m>:5nm- (2.13

For simplicity, we will neglect the refractory periag in
the following, consideringro=0 as a good approximation
for not too high spike emission rates<€1/7,=500 Hz).

1. Some remarks on eigenvalues and eigenfunctions

We list below some general properties of the eigenvalue

and eigenfunctions of which will be instrumental in the

following; we will sometimes use the case of noninteracting

neurons as an easy reference situation for illustrative pu
poses, although the statements in this subsection apply to t
general, interacting case.

Ao=0 is always an eigenvalue &f and the correspond-
ing eigenfunctiong, is the stationary solution of the popu-
lation dynamicsd;¢o=0.

The eigenvalues are in general complex, with ARe
<0, V n#0, [22]; the latter condition can be inferred from

the fact that, for an ensemble of noninteracting neurons, th
solution of the Fokker-Planck equation is directly related to,

the eigenvalues of, and is expected to converge th,,

instead of exploding, which would be the case for positive

eigenvaluegsee also Sec. 11D)1

If N, is an eigenvalue, alsa; is an eigenvalue, with
eigenfunction| ¢’ ) ({(#7%|), because (L™) is real. We set
N _,=\; and consequentlyp_.)=|¢rn), so that the sums

spike train: irregular firinghigh coefficient of variation24])
corresponds to a noise-dominated regime, while regular
spike trains are related to a drift-dominated regime. Such a
spread in the coefficient of variation of interspike intervals of
the single neuron does not spoil the hypothesis of the theory,
as long as the independence of the firing of different neurons
holds[12,13, which is reasonable in biologically plausible
conditions[25].

We conjecture that the eigenvalueslLoére real for noise-
gominated regimes and complex conjugates for drift domi-
nated regimes. For an ensemble of noninteracting neurons,
whose dynamics is directly driven by the eigenvalued. of
rt_his implies that for drift-dominated regimes the neural non-
rilnteracting population can undergo transient oscillatirs
thie way to the stationary statevhile this would be forbid-
den for noise-dominated regimes.

The above statements have been confirmed by explicit
calculation in the case of constafitand B (Wiener process
with drift, “linear IF neuron”), to be discussed in Sec. Ill.

As an aid to intuition, one can think of@(v,t) which is
initially very sharply concentrated; if the dynamics pfis
Sssentially governed by the drift, its motion along the al-
lowed domair{v i, , @] is close to a translation, with a minor
spreading effect due to diffusion. The probability flux across
6 is zero until the upper tail gb reaches, increases as the
bulk of the distribution goes through, and vanishes again.
From then on,p restarts traveling fromv ., to 6, while
maintaining slow spreading, and the emission rate undergoes
increasingly damped oscillations, until the stationary state is

all the integer numbers. Obviously if, e R, the enumera-
tion along the negative values pofis redundant, and we will
see later how this is handled in a specific example.

From the form of L*, and the boundary condition
3, (v min,t)=0, it can be seen that the eigenfunctigg
must always satisfy the conditiof, =0, so ¢, is a con-
stant. Becauséyy| dg) =1 and¢o(v) is a p.d.f., so that

(4
$o(v)dv=1,
we haveyy=1. Finally, using Eq(2.13),
[4
(Yolpny=|  &n(v)dv=0, ¥n#0.

Umin

(2.14

imagine a pure diffusiorfzero drify process, starting from
the same initial condition, which even in the case of a
v-dependenB makesp spread more and more, without ig-
niting oscillations.

Although the above examples are special and simple, it
seems reasonable to assume flt@nsient oscillations are
possible only when some “memory” is present in the motion
of p, and this can only be associated with the drift term.

As we show later, the eigenvalues bfare not simply
related to the characteristic times of the system in the pres-
ence of a recurrent interaction, and the network activity can
be oscillatory also in the noise-dominated regime.

D. The emission rate equation

Thanks to the completeness relati@12, p(v,t) can be

From this result we can argue that only the stationary modexpressed as

¢, contributes to the normalization condition fofv,t) (see
also[22]). As we will see later, this is a useful feature of the
eigenfunction expansiofi1].

|p>:; an|¢n>v (2.19
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wherea,=(y,|p) are the time-dependent coefficients of thewhich binds the single neuron properties to the population
modal expansion. Singeis real,a}=a_,. dynamics.
The dynamics of the,, can be determined directly from  The (nonlineaj emission rate equation system can be
the Fokker-Planck equatiof2.3) (see, for instance, Ref. written in matrix form as
[11]), : _ :
5=(A+CV)§+6V,

0= (ol ) + (3000 lP) = (UnlLPY+ S @l i) Sy 018

:<|_+,/,n|p>+;,%: am( 9, | ) where a is the vector of the modal expansion coefficients

with n#0; the elements of are the flux over the absorbing

barrier for nonstationary mod¢&7],
and then

fo=—3%3,0%(v,1) pn(v,1)],—y, VYN#0, (2.19
a”:)‘“a“JrVEm: A 9| G- (218 the elements of are the coupling terms between théh
mode and the stationary one,

Here we have used the fact that the only time dependence of
 is implicitly due to the moments of the currept,and o2, Cn=(dyn| bo),
which are in turn functions of the ratgt) (in other words,
external input is assumed to be stationaif several popu-
lations are presenty, s will have contributions from the
emission rates of the different populatiofsee Sec. Il §
including external neurons, an@, | #,) should be re-
garded as gopulation coupling termit vanishes ify does A is a diagonal matrix whose elements are the eigenvalues of
not enter the afferent current and does not affect the dynar’r]_—
ics of the depolarizations. '

The infinite set of nonlinear differential equati@.16) A =\.S VNn.m+0.
does not contain all the information on the dynamics of the nme mnnm '
system. What is missing is the answer to the following ques- ypder the hypotheses which define the mean-field ap-
tion: Which is the emission rate, givenp(v,t)? To “close  proximation, Eq(2.18 describes the collective behavior of a
the loop” and generate closed equations for &r the v, ool of neurons in terms of the fraction of emitting neurons
which is the natural observable for the collective state of thg,er unit time, »(t), thus providing a dynamical formulation

neural populationone needs a relation connectipfu) t0  of the mean-field treatment, equally valid in stationary or
v. v is the flux across the absorbing barrier which, from Eqs{ransient regimef28].
(2.6) and(2.19), is A nonstationaryr(t) embodies the changes in time of the
average statistical properties of the neurons’ afferent current,
_ 1 5 and can correlate the activities of two given neurons; this
V= 2; (v, 1)y bn(v,)y=p- 217 should be regarded as a “trivial” correlation due to the input
part of the current that neurons have in commgelf-
Equations(2.16 and (2.17 describe completely the dy- consistently taken into account in the above mean-field treat-

namics of the neural population, using as the only observabl ent).hThi_s dorsshnpt implﬁ' ahbreakdfovr\:n ?f thejlgpenqrince |
describing the system the probability current across th&YPOthesis which is at the heart of the formalism. The col-

ective activity is still adequately described by a renewal,

threshold: the instantaneous emission rateThis is an ef- . . .
nonstationary Poisson process completely determined: by

fective way to reduce the dimensionality of the problem be-N ind dent ditionallv to th .
cause, as we will see later, a fini@nd small number ofas sigzr?.:tz are independent, conditionally to the average emis-

is often enough for an adequate description of the time evo: 5
lution of v [26]. We also remark thape and o“ in the network are no

The following remarks provide a simplification. BecauseIonger independent parameters, but are linked through

only the stationary mode contributes to the normalizationsuf\z trl‘(a(tj the Iz_:ttte_r tlﬁcomescafmﬁ]lletedesc_r iptit(_)n of the
condition ofp(v,t), it follows thatag=1 at all times. Since network dynamics in the mean-field approximation.

wo=1, the coupling term(d, | ¢y =0. Furthermore, the
flux due to the stationary modeé, is the current-to-rate

Yn#0,

while C is the matrix of the coupling terms between the
nonstationary modes

Com=(d,¥nlbm),  ¥YNn,m#0.

1. Noninteracting neurons

transduction functionb(u,0?) of the single neuron in sta- A very simple case is that of a population of noninteract-
tionary conditiond12], ing neurons. Sincex and o> do not depend orv, d,¥,
=0 and the coupling terms vanisiC&0 andc=0). The
O (v)=P(u(v,v),0%(v,v))=—3%3d,0%v,t) do(v,)]|,—4, emission rate equatiof2.18 has now an explicit solution,
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the characteristic times of transient departures from them. To
start, we sei=ga; +&2a,+ - and v=vo+ev;+ev,+

As the afferent current is stationary, the eigenvalues, the flux- -, wherev, is the solution of the self-consistency equation
vector, and the transfer function are constants and the emi$2.22 and ¢ is the size of the perturbation from the fixed
sion rate is point. Any functionF of v can be expanded as a Taylor’s
series, which to second order gives

V(1) =D (u(t),d?(t)+ (1) e A 5(0).

HO= R0t 2 (O @20 k)R () R (gt 2 () vt S (2]

so that the spectrum df determines directly the character- T

istic times of the population dynamidthe same result for ,

the uncoupled network is reported[i22]). Consistently with ~ WhereF’=ad,F. o _

previous remarks, as—x, v—®(u,02), coherently with Inser.tlng the above expansion in the rate equa.tlon, and

a negative real part of the eigenvalues. comparing the terms of the same order, the dynamics of the
For Rex,<0, after a time greater then 1/mjRe),|,  frst-order perturbation is

initial conditions and transients are forgotten, and the station-

ary population activity is the same as the mean-field rate 51(t)=A(v0)51(t)+5( vo) vy (t— ),
emission® (u,o?) of the single neurons.
When the interaction is turned on, the “population char- (1) =D (vg) vy (t— &)+ f(wg) - Ay (t).

acteristic times” are obviously a complex mixture of single
neuron properties and the properties of the collective activityThis system of ordinary differential equations with constant
coefficients can be solved using the Laplace transform. The

2. Synaptic delays resulting transformed emission raig(s) is
If we consider a constant delay tindein the transmission
of spikes, the rate equation is modified because all the terms 1 . 4
including the parameters of the input currepis(v,t) and vi(s)= (e9— ") —F-(sl _A)—lgs{f'(SI —A)
2 . .. . . '
o“(v,t), implicit functions ofv] are to be calculated at time
t=94, X[a,(0)e%+cvy(0)]— (- 1)d" v, (0)/s},
A1) =[A(t—8)+C(t— &) »(t— 8)]a(t) (223
+E(t—5)i(t—5) (2.21) where 61— A) ! is a diagonal matrix with elements #/(
’ ' —\,) and all the functions ob are evaluated at=v,. In
()= (t—8)+f(t—o)-a(t). performing the Laplace transform of anda, we assumed

a,(t)=a,(0) andw,(t)=»,(0) for anyt<O.

We can in principle generalize to the case in which delays  The stability conditions and the characteristic times of the
are drawn randomly and independently at each site from gansient dynamics are in principle derived by standard meth-
distributionp(6). We should then také into account in the ods, by Ca|cu|ating the po]es ofl(s)_ To characterize the
causal agent, the average number of afferent spikes per urfibles, we resort to approximations; we will see in the fol-
time (v), substituting every occurrence of(t—4) with  |owing two subsections how two kinds of small-coupling
Jv(t=29)p(8)ds [9]. approximation allow us to characterize two sets of poles of

v1(S), which expose very different dynamical features.
E. Local analysis We notice that, in order to find the whole set of poles of

The fixed points of the autonomous systém2l) are  vi(S), only the zeros of ¢°—d')—f-(sl—A) *cs are

. bva—0 andy=0 needed: the other two possibly contributing terms which ap-
given bya=0 andv=U, pear in the curly brackets do not actually contrib[28].

-

a=0, 1. Stability

v=>(v). (2.22 The asynchronous stai€t) = v is stable if all the poles

s, of v4(s) have a negative real part. To evaluate the stability

This is the self-consistency equation introduced in R€f,  conditions, we first look for poles on the imaginary axes,
and used in the context of a mean-field treatment in Rf.  which (if they exish separate the region of stability from that
to study the steady states of a network of IF neurons. Asf instability. The poles,=x,+ iy, of v,(s) solve the equa-
expected, the conditioa=0 implies that the p.d.f. of the tions
depolarization at the fixed point is the stationary mode

[P(v) = ¢o(v)]. e’ cogys) —R(s) =", (2.249
With a time-dependent perturbation approach we can
study the local stability of the fixed points, their nature, and e*sin(ys)—1(s)=0,
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where  R(s)=Rgf-(sl—-A)"cs], I(s)=Im[f-(sl  Ims,~1/8, the above condition is certainly satisfied af
_A)flé)s]’ and s= X+|y Due to the presence of th_é <1/V0, which is the case in the typlca| frequency range.
terms, R(S) and | (S) are expressions of the recurrent cou- A noteworthy implication of the above Stabl'lty analysis is
pling and vanish for uncoupled neurons. that asingle neuronfeature, the slope of the current-to-rate
The solutions are quite different depending on the excitatransduction functionb, determines in general the stability
tory or inhibitory nature of the neurons. For a population ofof the fixed pointyy for a populationof neurons. It is also
excitatory neuronsp is a monotonically increasing function worth noting that®’ depends on the synaptic coupling
of v, ®'(v)>0. In the caseb’(vy)=1, it is easy to see strengths, vigu and o?, and the average properties of the
thats=0 is a real pole ofr;(s). This exact condition deter- recurrent interaction among neurons emerge as the primary
mines a transition from stable to unstable steady states fqeatures governing the network stability.
the system, because when We also remark that the above stability condition, being
derived in the framework of the linear analysis, depends on
the dynamicq2.1) of the single neuron membrane potential

the real pole becomes positive amg is an unstable state v only throughv (via u and 0?). Indeed, in the linear ap-
[30]. We can see this by taking as an approximation of thigoroximation we can write the evolution equation ferin
real pole the solution 0§5°—d'=0, such a way that th@ no longer appear. It is tempting to
speculate that, even in the nonlinear case of(Ed.8), since
the time evolution ofp(v,t) is ultimately determined by
throughu ando?, the dynamics of the probability current
is in fact a complete description of the dynamicspgb,t)
which is indeed a good approximation if the real pole is closgonce initial conditions and stationary external input are
to zero[ |s|<min|Re(\,/fc,)|]. given). The seemingly nonrecoverable loss of information
To characterize one set of solutions of E¢®.24, we  which takes place when reducing the motionpgi),t) to
assume that for sufficiently small coupling the ter®R&)  that of »(t) could be avoided because of the peculiar depen-
andl(s) are negligible compared ', at least in the neigh-  dence of the Fokker-Planck equation on thigself; a related

D' (vg)>1,

SOZ%In (I),(Vo), (225)

borhood of a poins{”) which is a solution of concept will be touched upon in Sec. Il F, where we empha-
5 , size that different “histories'V(t) in the ensemble described
e’ codys)=a’, (226 py p(v,t) only communicate to each other via spikes.

The infinite set of poles responsible for the stability of the
system are due to the presence of a delag the transmis-
sion of the spikes: we therefore call theransmission poles
s For a system close enough to the stability boundary,
very high frequency of activity at frequencies of orde1/
can arise. Transmission poles disappear for uncoupled neu-
rons.

As will become clearer in the following, those oscilla-
tions, fast as they are, have nothing to do with the possible
F-(sl —A)‘165|S:5(0) slow, osc_illatory response of the network to a change in its

n external inputs.
) ' This set of poles was first observed in a mean-field ap-
proach not taking into account fluctuations in the afferent
Such poles cross the imaginary axis and destabilize the asynurrent in Ref[5], where they are termed tlygoss structure

e*’sin(ys)=0,

and is given b)sﬁ,o)z(ln ®'+i2nm)/ 6 for excitatory neurons
and s{9=[In|®’'|+i(2n—1)7)/5 for inhibitory neurons K
runs over the integers

Under the above assumption, to be checkeaabsteriori
we can perturbatively expand arousﬂ)) (with respect to
|[R+il]) to find a succession of solutions of Eq2.24),

_ (0
sn=s0+

chronous state when Bg=0. This happens when of the spectrum. Furthermore, previous works by other au-
) ) thors[9,31,13 have shown that the description of the system
®'=1-R(i27n/9) beyond the stability boundary is describéshce a third-

order expansion has been carried)ohy very fast limit
cycles, at least for networks of inhibitory IF neurons. On the
®'=—-1—R[i(2n—1)7/&]. other hand, Eq(2.24) provides a generalization of the find-
ings of the quoted works as for the dynamics within the
for inhibitory neurons(the stability condition in this case is Stability region.
approximately given byb’>—1). Coming back to the role of delays, it turns out that for an
In the cases examined in the following, it turns out thateXCltatory population in drift-dominated regimes, the real
the poless, move towards the imaginary axis for increasing part ofs, as a function o, for fixed®' is not monotonic
|®’|, and for excitatory neurons the pole on the real axis igor large & (contrary to what happens in the approximations
the first to reach the imaginary axis. adopted above For successive values of Res(t) becomes
For drift-dominated regimes, the above results hold projpositive in an interval of values af, and d|ﬁerenm corre-
vided thats, is far from \,, because otherwisB(s) and  spond to intervals beginning @&-n/v,. Thus,for large de-
I(s) are no longer negligible; since Iny~vq [6,22] and  laysthe instability of the excitatory network with negligible

for excitatory neurons, and when
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noise can be oscillatory in nature. The dynamical scenariosome support for this statemeisee, for example, Ref34]),

emerging in such situations has been described % For

large delays, the oscillatory instability which occurs at fre-

guencies near Im,, is driven by a transmission pOlﬁf(t)
close to the diffusion poles. So a kind of coupling

which we feel would deserve further experimental investiga-
tion.

In the regions not too close to the stability boundasy,
(and the analogous polss near\,) have real parts smaller

emerges in this condition between the transmission and thi@ module than those of transmission poles, so that they are,
diffusion poles: the almost regular transport of realizationgn the situations of interest, responsible for the characteristic

with approximate periodicity 14 locks to the transmission
of waves of neural activity, affected by a delay~1/v,
[7,32].

2. Transient behavior and characteristic times

We remarked that for uncoupled neurons, the poles;of
are the eigenvalues of the Fokker-Planck operator. This su

gests a guess for finding other sets of poles as small-couplin{%

perturbations of the.. For the sake of a clear presentation,

value, \; (and its complex conjugake assuming|s|d<1
such thae*°=1+sé (verifieda posteriorito be a very good
approximation for physiologically reasonable values of syn
aptic delays We also assume that the terfjg,,s/(S—A\,)
are negligible fom+# = 1. Then the new set of poles is de-
termined by the equation

) s=0.

We further take|f,c;| small, and correspondingly we
write an expansion for the solutieR=s{"+ es"), wheres
is order|f,c,|. At order zero s\ is one of the solutions of

* A%
ficy

*
S—N\]

ficy

+s6-d' —
1+s6—-@ .

a third degree equation. These include one real solution,

close to thesy transmission pole in Eq2.25. The first-order
equation is first degree iaﬁ]l’, such that we have three so-
lutions s§, s, ands®), one for each of the solutions at
order zero. The complex solutions are

ficq

—= 2.2
1-d'+\,8 @27

51:)\1( 1+

ands_,=s7 .

For the excitatory populationd{’ >0), Eq. (2.27) sug-
gests that wheb’ — 1, and then wheff,c,| increasess;
=—1/Re(s;), the longest characteristic time of the system
becomes small, so that the system reaches more quickly t

time of the approach to an asynchronous sigte

Turning to the imaginary part of;, for the relatively low
frequencies of collective oscillations represented by this pole
(directly related to the eigenvalug), the remarks at the end
of Sec. IIC1 apply. Since the above poles are intimately
related to the pure “free” diffusion process, we term them
diffusionpoles.
9 In the low noise limit, the diffusion poles can be associ-
ed with the characteristic times and resonant frequencies

) ) . .observed in previous works using a mean-field approach
we consider the case of a population of excitatory neurons i

a drift-dominated regime, and we focus on the first eigen

With a deterministic afferent currefi2,5,6,1Q, and called in

5] the fine structureof the spectrum. The variance of the
recurrent afferent current, taken into account in the present
theory, dramatically affects the behavior of the sysigar-
ticularly in noise-dominated regimgsas was recognized in
Refs. [6] and [22] for the case of external activity-
independent noise.

The above resonant response due to the diffusion poles is
never enough to challenge the network local stability; on the
other hand, we discussed in the previous subsection that for
suitable(large delays, a “coupling” between the transmis-
sion and the diffusion poles emerges which facilitates the
ignition of an unstable regim@riven anyway by the trans-
mission polesat frequencies around multiples of.

3. Some remarks on the nature of the poles

To summarize the phenomenological implications of the
above analysis, we list some remarks on the role and behav-
ior of the two families of poles ofv;(s) discussed in the
previous subsections.

The diffusion polesihereafter callecs!”)) do not affect
the stability of the excitatory neural populatigwhich is
entirely due to the transmission poles{)] since their real
part is always negative, as that of the eigenvaluesindeed
we argued that for increasin@’, the s{¥) get farther and
farther from the imaginary axis, while the opposite is true for
s, ultimately bringing the network to instability.

In many cases of intere&nd perhaps in genejathe real
mart of A, increases with increasing so that the relaxation

steady state, as will be shown in Sec. Il for a specific caselimes of the system are essentially determined{y. Thus,

Remembering thab = ®(u,0?), and taking into account
that for an excitatory population bota and o® are mono-
tonically increasing functions of the synaptic couplirigee,

even if in principle we could have repeated the approximate
calculation leading to Eq(2.27) for any eigenvalue, that
term is likely to provide the main contribution.

for instance[33]), it is seen that an increase in the recurrent The transmission poles{’ are analogous to those ob-

couplings brings about an increase®r. This implies that if

served in Refs[5] and[9], and disappear for a noninteract-

learningis expressed as a potentiation of the synaptic efficaing network, or vanishing transmission delays. The diffusion
cies, this would be observed in the response time of th@oless?) are inherently related to the nature of the diffusion
population to an external stimulation, so that a strengthenegrocess describing the network’s dynamics in the mean-field
recurrent coupling can prime the population to respondapproximation. They affect the network dynamics even in the
quickly. We further discuss this point in Sec. llID, in the noninteracting case, both governing the transient response of
context of a specific model. Experimental evidence provideshe network to a change in its inputs, and contributing low-
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frequency components to the spectrum of the global activity Before that, a remark is in order: The above description in

for a finite network, as we show in the following section
[35].

F. Finite-size effects

Finite N brings about both “incoherent” fluctuations,

which are already taken care of in the mean-field theory, an

“coherent” fluctuations, which give rise to new phenomena

(such that neurons share a negligible portion of commo

input), or other sources of quenched randomness affectin

the interaction among neurofeffectively decorrelating neu-

rons’ firings even for high connectivity the stochastic

changes of the current are sensed by different neurons
incoherent fluctuation§36]. These fluctuations are taken
care of in the mean-field approach through(v,t).

On the other hand, the number of spikes emitted in a tim%h

interval dt by the network is a Poisson variable with mean
and varianceN v(t)dt, as observed in Ref§9,10]. The esti-
mate ofr(t) [similarly top(v,t)] is then a stochastic process
vn(t), well described in the limit of larg&lv by

v(t)
(b)) =w(t)+ VTF(U’ (2.28

where I'(t) is a white noise as in the Langevin equation
(2.1), andp(t) is the probability of emitting a spike per unit
time in the infinite network. Such finitB- fluctuations,
which affect the global activityy, are coherently felt by all

terms ofy(t) andp(v,t), which are the infiniteN dynamic
variables, is justified in this context because in this context
the neurons interact only through the emitted spikes: Two
different membrane potentialg;(t) and V;(t) do not di-
rectly interact. The interplay between the two levels of de-
cription (vy, pn) @and (v, p) can be viewed as follows:
or finite N, eachV still evolves, as already remarked, ac-

. . " cordin he Langevin ida.1), sin ver
As for the first, in the presence of sparse connect|V|tyCO ding to the Langevin equatia@.1), since to a very good

approximation its afferent current isécorrelated Gaussian
rocess; so, the purely diffusive part of the collective dynam-
s is still captured by the Fokker-Planck equation fipthe

evolution equation for an infinite ensemble of neurons. Then,

we have to take the finit®l into account on the boundaries

"ills.'e., upon spikes emissipnwhich in a sense make a finite

subset of the infinite number of neurons “real.”

As a complete set over which to expand the above sto-
astic Fokker-Planck equation, we still take the eigenfunc-
tions ofLy with their eigenvalues, which are now stochastic,
explicit functions ofvy. The use of this stochastic moving
basis leads to the following expression for the emission rate
equation:

a=(A+Cuy)a+ o+ gwINT,

y=®+f. 5,
vy=v+VINT, (2.30

neurons in the network: The now stochastic momentdvhere the elements af are the nonstationary eigenfunctions

w(v,vn() anda?(v, vy(t)) of the afferent current all expe-

of the adjoint operatoL , , evaluated at the reset potential,

rience the same fluctuation, since they are driven by the col#n(H.t). For simplicity, we omitted the dependence on time,
lective activity vy . This approach leads then to a “stochastic Which is the same as in E(2.21). It should be noted that the

version” of the Fokker-Planck operatdr, Ly, and conse-
quently of Eq.(2.3). Stochasticity disappears in the linht
—oo because

lim vy(t)=p(1).

N— o

Besides affectingu and o2, further finiteN effects are
related to fluctuations a andH. The flux vy(t) exiting @
reenters at the reset potentid] determining a departure
from the boundary conditiofR.7), due to a stochastic source
of realizations, not present in the infinike-imit. The net

flux conservation can be recovered by adding a muItiplica;-%)o,[emi(,:lI H) make the dynamics of the coefficiends(t)

tive noise to the Fokker-Planck equation, representing th

stochastic fluctuation of the reentering flux, with respect t
its expected value in the infinitd-limit:

dp(v,1)=Lyp(v,t)+ (v —H)[vn(t) —v(1) ]

v(t)
=Lyp(v,t)+8(v—H) TF(t). (2.29

This equation, together with E¢R.28), describes the dynam-
ics of a population of neurons for finifd, and we can now
try to derive the finiteN emission rate equation analogous to
Eq. (2.18.

above stochastic emission rate equation exhibits a compli-

cated dependence on the finite-size noise, wWithC, andc
all functions ofvy : This is the expression of the noisy nature
of the operatoL y in this context.

The above fluctuations act as an ongoing series of instan-
taneous endogenous perturbations, and as such they probe
the characteristic times of the system. This will show up very
clearly in the study of the finitéd power spectral density of
the collective activity, as we will see later.

From Eq.(2.30, we see how the two sources of stochas-
ticity (the fluctuations of the moments of the afferent current,
leading toLy, and those of the reentering flux into the reset

and therefore the nature pf{v,t)] stochastic.

In order to single out the different sources of noise, it is
useful to discuss again the case of noninteracting neurons,
when the moments of the afferent current are independent of
the emission rater of the neuron population, the Fokker-
Planck operatoiL is deterministic as its eigenvalues and
eigenfunctions, and the coupling terms vanish, so that the
emission rate equation reduces to

d=Aa-+ jvINT,

V=(I>+F-5,
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vy=v+\vINT. P1()=|Ti(@)7o(w)]?
For drift-dominated regimes, all the, are complex stochas- |1+ f. (iwl —A)*llﬂ2 Vo

tic processes driven by the sameorrelated noise, and we
can prove that each one of them has to a good approximation
a resonant frequency in INy=nv. Since vy is a linear (2.32
function ofa throughv, the spectral content @ will endow ) )
vy With nontrivial spectral properties. We emphasize that thid1(@) has two series of peaks: one is centered around the
happens for a noninteracting network, and it is a manifestalMaginary part of the poles, (the resonant frequencies of
tion of the finiteN fluctuations not included in those @f  the System whose width is proportional to Rg. As we
and o2, will see in the next section, this provides evidence that in a
Intuitively, for drift-dominated regimes, a large fluctua- SySteém of coupled spiking neurons, macroscopically differ-

tion in p, due to the reentering flux iHl, propagates essen- ent character_istic times coexi&s suggested by experimen-
tially undeformed toward®, since in that regime it is not tal evidence in the study of the cross-correlation function of

spread much by the diffusion. neuron activity. They span a range from very low
(~10 Hz) to high frequency of the order of&/these latter
1. Local analysis peaks have been recognized §9].

The numerator modulates the spectrum, inducing a second

Asynchronous states are now represented by a distributioget of peaks corresponding to the So we can recognize
of emission rates around the mean-field fixed poit The 4\ qualitatively different finiteN contributions toP;(w):

local analysis described in the previous section can be ane is related to going frorh to Ly in Eq. (2.29 and pro-

plied n the same way to th's. case. We assume the zero-ordahces the first set of peaks; it has in principle a global effect
contribution to be deterministic and constant, and the stog P,(w), but it turns out to significantly affect only the

chatstlg (;pmponer;;] otnfly e}ffect the f'rsﬁtﬁndl hlglher ord;grs Oﬁigh-w part related to transmission poles. The other fihlte-
perturbations, so that for large enoujpthe leading contri- contribution toP;(w) is the one determined by the fluctua-

bution of the stochastic driving forceyu(t)/NI'(t)  {ions of the reentering flux at, and has a major effect for

(€= ") —if-(iwl —A) *Cwl? N

=\[votva(t)+---JINI(1) is low w (at least for drift-dominated regimesThis provides
phenomenological evidence for the role of the latter source
7o(t) = \/%F(t) of finite-N noise.

The numerator of Eq2.32) is the only element that does

not vanish when the neurons are uncoupldd £0 andc
:0),

and we will then write

81(1)= Ay (1) + Cv(t—8) + (D), ) o
o Pl(w)=|1+f-(iwl—A)’lz//|2W. (2.33
v()=D v (t—6)+f-a(t)+ no(t), (2.3)

where all the time-independent terms are evaluated(8t It provides a nontrivial contribution only at low frequency,

since
=7Vp-
The previously discussed questions about the stability and f(H)
the transients are not altered by the finite-size effects, as the f (ol —A)‘lzZ= 2 _nm 2
pole composition of the Laplace transfommq(s) of v4(t) is nfo o= Ay
unaffected by the presence gf, which enters the numera-
tor. tends to zero whenw—, where P,;(w) approaches the

power spectrum of a white noise. At low frequency we ex-
2. Power spectral density pect to see some resonant peaks aroun(z{_nlmat least in
strongly drift-dominated(suprathresholdregimes(remem-

Under the conditions of validity of the local analysis, the per that we conjecture and verify later in a specific case that
system is stochastic and linear, and can be fully characterizeg,\ —q for noise-dominated regimes
n

by the 2dr-|vmg white noisero(t), whose power spectrum  This component of the power spectrum originates from
|70(@)|” is vo/N, and the transfer functiofithe Fourier e giffusive transport of the fluctuations pfv,t) induced
transform of the impulsive responsd (), at the reset potential by the reentering stochastic flux. Its
- 1z contribution is not negligible only for those regimes that al-
1+f-(lol=A) "y low a slow forgetting of the history of the depolarization, as
(1-®'e ") —if - (iwl —A) ‘cwe ®d it is the case for drift-dominated regimes.
If a distribution of delays is introduced, it can be argued
If one wants to consider the contribution of the averagéo  (and partially verified in simulationghat the highe part of
the emission rate(t), a term proportional té&(w) has to be the spectrum gets flattened, thus affecting mostly the trans-
added, which we omit for simplicity. mission part of the spectrum. This, we expect, has implica-
The power spectrur®,(w) of v¢(t) is then given by tions for the stability of the network, since the damping of

Ti(w)=
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the high-frequency tail of the spectrum can be viewed as an By such an extension, the present formalism can embody
effective increase of the real part of the hightransmission the study of multipopulation systems of IF neurons, per-
poles, thereby helping keeping the system away from théormed under various viewpoints and with different tools by
stability boundary(see also Ref9] for a similar remark many authorg$5,8,37,13,38 (see alsd39,40).
It can be interesting to observe that such an approach
G. Several interacting populations allows us in principle, in the limit of an infinite number of
. . . ) populations, to study the case of an inhomogeneous popula-
The approach discussed in the previous subsections hasign 'viewed as a collection of smalbut large enough to
stralghtforward extension to the case of several mter'actl.ngatisfy the mean-field hypotheséateracting homogeneous
populations of IF neurons. Following a common practice iNhopulations(as discussed in Ref§5,7]). The case of spa-

the mean-field analysis, the network of interacting neurons iy structured networks of neurons can then be approached
partitioned in *homogeneous populations,” each composedyjong these lines, and it is part of planned future work.
of a subset of neurons which are structurally ident{saime

emission threshold, same leakage term,)edad share the

same statistical properties of their afferent currére., !l AN EXAMPLE: ONE POPULATION OF LINEAR IF
and ), emitting then spikes at the same rate. This parti- NEURONS

tioning accounts for structurally differer(e.g., excitatory
versus inhibitory or functionally different(e.g., stimulated
versus nonstimulatgaheurons. In this case, for each popula-
tion « there_ is a Fokker-Planck equatiozn with its operatordrift, having a reflecting barrier at,,,=0, which we also
L, depending on the moments, and o7, of the afferent 5556 as the reset potentidh€0). It was proven in
current, probability density functiop,(v,t), and emission 1 31 that networks of IF neurons retain most of the col-
rate v, . All of these variables are now functions gf the ac-|ective properties of those composed of leaky IF neurons.
tivity of all the (say P populations, so that,=u,(v) and  The decay term is constarft{v) = — 8. For simplicity here

Because of its amenability to analytical treatment, we spe-
cialize the above analysis to the linear IF neuthlF) [12],
whose depolarization is described by a Wiener process with

o2=02(v), wherev={v,}7. we setu(t)— B— w(t), consideringd as a constant inhibi-
The (infinite-N) emission rate equation becomes tory afferent current, and the corresponding Fokker-Planck
. o operatorL  r becomes
a,=| Ay+ D Coavgla,+ D Cogvs,
B§=:l B7R ﬁ§=:l B7R Lup(v,t)=—u(t)d, + 30%(1)J; .
v,=®,+f,a, Equation(2.9) is therefore a homogeneous second-order dif-

ferential equation with constant coefficients, whose general
for any a [1,P], wherea, is the vector of the modal ex- Solution, ifA+0, is
pansion coefficients of the p.dj,, the flux vector isFa &
=f.(a.0%), the population gain function is @, (v t)=[c,e?+c_e eT (3.1
=®,(u,,0°%), the diagonal matrix of the eigenvalues is
Ay=Ay(1t,02), and the coupling matrixC and vectorc  (valid for {#0), where we set
are now expressions not only of the recurrent interaction
(a, @) but also of the coupling between different populations

0
(.B). (V== 7+ 207N,

g
6a5:{<‘9vﬂ¢an(ﬂa !0-:21/)| ¢aO(lu‘a 10-121)>}n£0
(3.2

i
S

and

_ 2 2
Caﬁ_{w”ﬁ%“(’u“ o) amliarTa))tnto- The spectrum of the operator, and the arbitrary constants in

) ) ) its eigenfunctions, are determined by the boundary condi-
It should be noted that if neurons belonging to differentijons as we show in the following.

populations diffgr only fpr the affe.rent current, taking into  From Eq. (2.1, the adjoint operator for this specific
account several interacting populations does not require us {Qgdel is
study anew the Fokker-Planck operatoand its eigenvalues

and eigenfunctions, so that the above expansion relies upon

the same information needed for the case of a single popu-

lation. This is due to the particular functional dependence on

the activity of the different populations, which is always and its eigenfunctiong, are

“seen” through the momentg , and cri of the afferent cur-

rents. Py (v,t)=[c e l+c_e e &/f

Lie(0,t)=pu(t)d,+30%(1) 37,
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A. Eigenvalues and eigenfunctions of | ¢ 0 150
1. The stationary modeA=0 [~ 2 ____ 100
. . . . -50
A=0 is an eigenvalue df. The corresponding eigenfunc- 50
tion, which in general depends on time throyglando?, is T ool > _ )
C o« E
do(v,t)=—[1—e 260 0)0] -150 -50
72
-100
wherec is given by the normalization condition -200 :
-150
2 -1 -5 0 5 -5 0 5
g 2#0 2
c=d(p,0?)= —1+e 2ublo , ¢ ¢
(m,0°) 242 (—70

FIG. 1. The spectrum df r as a function of. Real(left) and

the current-to-rate transduction function derived in Re]. ~ imaginary (right) parts of the eigenvalues ofL g N, (ne
In stationary condition(«,o?) gives the output emission [—3.3]), for £ varying in the same interval. In the R¢¢) plot the
rate v of the population(its gain function and ¢, is the d_asht_ed_ I|ne§ are the reference valteam?n?, f_or £=0. We set for
p.d.f. p(v) of the membrane potential at any time. simplicity °=1 and§=1. See text for details.

Recall that the eigenfunctiory, of the adjoint operator ) ) o o
stationary mode. Making use of the characteristic equation, it

L e is .
LIF is not hard to prove that), /| ¢,)=0 when\’#\, whereas
Wo=1. the normalization conditioki, | ¢, )= 1 requires
2. The nonstationary modes 2L
C\= .
To characterize the spectrum of the operatQp, we : 6[ L& cosh + ({?— €)sinh(]
study the generic eigenfunctiop, (v,t) for A#0 with the
boundary conditions appropriate for the LIF neuron. 3. The spectrum of ke

The presence of the absorbing barii215) constrains Eq.

(3.1) to the form For the sake of brevity, we do not give the details of the

computation of the eigenvalues bof r, and we just summa-
 (6-v) rize below the key features of the res(details of the com-
qsx(v,t):ckeg“”’sth, (3.9  putation are available from the authors upon request
Figure 1 shows the first seven eigenvaldexluding A
=0) as a function of. First of all, we note that Re<0, as
expected. It is also apparent that the real and imaginary parts
of N have an abrupt transition when the input current goes

which, due to the flux conservatidi2.7) and the reflecting
barrier (2.8), satisfies the following equation:

12 —(L,2 _ from a noise-dominated regim&<0, i.e., negative total

720y Palo==(50°0, = md\), o+ . : ; 9 . ”

20 0ilo=0= (20" 0 =m0 drift) to a drift-dominated one £>0, i.e., positive total

From this we find thecharacteristic equation drift): In the first case, the eigenvalues are real and negative,
whereas if the drift is positive, the eigenvalues are complex.

{ef={ cosh{+ £ sinhZ, (3.9 To summarize, one eigenvalue lof ¢ is

whose solutions give the set of all the nonvanishing eigen- Ao=0

values of the operatok . It easy to verify from these

equations the propertf/¢, (v,t)dv =0. for any dynamic regime. The other eigenvalues are, &or

Before discussing the characteristic equation, we stud;gol
the eigenfunctions of the adjoint operalof,-, taking into
account the corresponding boundary conditions;(6) o2
=4, (0) andd,#,(0)=0. We obtain again Eq.3.4), con- Ap(0)=— —22772n2
sistently with the known property that the eigenvalues are the o
same as those df =, and the following expression for the

eigenfunctions: for any integem+0.
It turns out that Ra,(£) ~ — 27w2n2a?/ 6?— O(£), which
{v e suggests that the characteristic times associated with eigen-
_ _—¢lo
da(v,t)=e =7 fcosh -+ Esinfr - (3.9 values\, decrease like B2 whenn increases, leading us to

assume that in a quasistationary regime only the first eigen-
In the above equation, we omitted the integration con-alues play an important role: The modes are exponentially
stant, because we can absorb it in theof ¢, . This con- damped with characteristic timg&e\ | 1~1/(no)? (see
stantc, in Eq. (3.3 is complex and can be determined from also Sec. IIER This also suggests that the noise in the
the biorthonormality conditiori2.13, as in the case of the afferent current plays an important role for uncoupled net-
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FIG. 2. Transient response of a population of uncoupled neurons: Simulations vs theory. The initial condi{on=9 for all the
neurons. At=0 a current is injected, with the same constarand o2 for all the neurons, such as to asymptotically drive the neurons to
fire atvy=25 Hz. The upper and lower plots refer to neurons in drift-dominated and noise-dominated regimes, respectively. Light gray lines
are the emission rate of 10 000 simulated IF neurons; dashed-dotted, dashed, and solid lines are the theoretical emission rates due to the first
second, and thir@couples of modes, respectively. Damped oscillations are visible only in the drift-dominated regime, mainly due to the first
eigenvalue oL (dotted lines are the real parts of the first modes

works: The greater the fluctuations in the afferent current, théirst three eigenmodes and their complex conjugates
shorter the response time, as expected. enough to account for the properties of the transient response
As we will see in the following section, in the absence ofwith high accuracy; furthermore, in the cases shown, the hi-
interaction between neurons, the imaginary part of the eigererarchy of characteristic times is such that after a few milli-
values, which appears only in a drift-dominated regime, acseconds the first eigenvalue alone guides the evolution of
counts for the oscillatory behavior of the population emis-(the real part of the first term is the dotted line in the plots
sion rate. Such oscillation is dominated by the first spectralfhe very early stages are not well reproduced, since more
term (n=1), and its period is given by 2/|Im\i|=6/x  and more terms would be needed as we go towtsd3; a
=1/v, which is the time a neuron takes, in the absence ofmodest improvement over the first mode due to the inclusion
noise, to reach the threshold starting frafe 0. of the next two is barely visible in the second plot. The
hierarchy of times pertaining to the successive eigenvalues is
clearly illustrated in Fig. 1.
; o We remark that the numerical integration of the Fokker-
For an ensemble of noninteracting neurond) is given  pjanck equatiorinot shown is in excellent agreement with
by Eq.(2.20, where the fluxes,,, defined by Eq(2.19, are  the simulation, which proves that the hypotheses underlying
evaluated using eigenstatgs, given by Eq.(3.3). If we  the theory are fulfilled.

B. A first check: Noninteracting neurons

further assume the initial conditiop(v,t=0)=4(v), the The spectral properties associated with the stationary state
result is are illustrated in Fig. 3. We recall that a nontrivial spectral
2 structure(modulating the constant, white noisg/N spec-
(1) =P (u,0?) + U_eéz c(Ny)Z(N ) 2eMt, tru_n_"l) appears as a result of finite-size gffects on the prqb-
20 Zo ability current at the boundaries, and, since we are dealing

with uncoupled neurons, the transmission poles do not con-
Theoretical predictions, and the range of validity of thetribute. The figure shows a comparison between the theoreti-
approximations involved, are checked against simulationgally predicted spectrum, Eq2.33, and the one derived
(and also numerical integration, not showof the Fokker-  from simulations. The position of the peaks is determined by
Planck equation. the imaginary part of the diffusion polgsvhich coincide
Figure 2 shows the population emission rate versus timewith the eigenvalues for the uncoupled networkhe real
for an ensemble of uncoupled LIF neurons, in a drift-part of the poles determines the height and width of the
dominated(top) and in a noise-dominatedbottom regime.  peaks. Similar results have been found in R&€], and also
Neurons all start integrating the afferent current from thein Refs.[2,15].
initial condition V=0, and parameters are such as to have a
stable, 25 Hz firing rate as a fixed point. The figure is meant C. Populations of interacting neurons
to illustrate how drift- or noise-dominated regimes imply
very different transient responses: damped oscillatory in the
former case and exponentially approaching the asymptotic We now move to the more interesting case of a population
state for the latter, as predicted by the theory. The quantiteef interacting neurons, and test the theoretical predictions
tive agreement between thedsolid black ling and simula-  concerning the transient behavior and the spectral properties.
tion (gray line, average activity of 10 000 simulated LIF neu- We first show in Fig. 4 the distribution of the poles of(s)
rons is remarkable. We note that only six spectral tefthe  [Eq. (2.23] for a population of interacting inhibitory neu-

1. A network of inhibitory neurons
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FIG. 3. Power spectrum of the activity of a population of un- E 4001 i
coupled neurons in a drift-dominated regime: Simulations vs theory. ®)
The solid line is the power spectrum from a simulation of 60 sec in 51
a stationary conditiortafter decay of the transienthe thick gray 200F ¢ T ¢t eooopoog
line is the theoretical prediction; the dashed line is the flat power 4 (k)
spectrum of the white noise with varianeg/N(vy=20 Hz and sg ) o2l s (D
N=1000). 0 5 g.l
oo
rons. The diffusion and transmission poles are plotted in the
complex plane for 13 values @', all corresponding to the -200¢ '_‘—’_‘—““”"i""“’
same fixed-point emission ra{®y adjusting external cur- L .
rents and couplings -600  -400  -200 0
It is seen that for the diffusion poles, the real part stays Re s, (Hz)

negative, while that of the transmission poles ultimately
crosses the imaginary axis for high enough coupling, thereb%it
determining the instability of the fixed point. It is also appar-
ent from the plot that the imaginary part of both the trans-

mission "fmd_the .dlf'fusmn .pole(she frequen_cy of the associ- marker, the smalletin module the slope of the transfer function
ate.d oscillationsis gssentlally constant W!th respectdd, and the coupling strengtis? (with its complex conjugateis the
while the characteristic times of the transient response, assgrst pole crossing the imaginary axes, determining the instability of
ciated with the real part, are very sensitivelt, and there-  the population dynamics. For different coupling strengths the exter-
fore to the coupling(stronger coupling, quicker response nal currents are adjusted in order to have the same fixed point at
For inhibitory neurons, the transmission poles always have @,=20 Hz. It is clearly seen in the figure that the diffusion and the
nonvanishing imaginary part; this suggests the oscillatory natrransmission poles move in opposite directions along the real axis,
ture of the instability, when the real part sf becomes whend’ is varied.
positive. In fact, it was proved ifB] (see also Ref.31]) that
the inhibitory network undergoes a Hopf bifurcation. Up to lations and the theoretical predictions in the infinite volume
tiny variations, for all the shown values @b’, Ims{®  limit.
=m(2n—1)/6. Figure 7 shows the power spectral density of the popula-
Figure 5 shows the distribution of the diffusion and trans-tion activity, theory versus simulation. The population activ-
mission poles in the complex plane for an inhibitory popula-ity has been sampled from simulation after the transient was
tion in a noise-dominated regime. Markers and shading aréxtinguished, in order to capture only the stationary spec-
as in Fig. 4. The network is stable for all the points showntrum. Besides the apparent good agreement between theory
(though it is still true that the transmission poles are responand simulations, we note the followin@) the position of the
sible for the instability of the network for high enough cou- high-frequency(transmissiop peaks is unaffected by finite-
plings). It is seen that in this case the real part of the diffu-size effects, coherently with the stated irrelevance of the lat-
sion poles has a weak dependence on the couplings, whifer for the poles of; (see remarks at the end of Sec. Il)F 1
the associated imaginary parts strongly depend on them. Wgompare the position of the peaks with the imaginary parts
also stress that the diffusion poles exhibit an imaginary partof s\’ in Fig. 4); (i) even if also the frequencies of the peaks
even if the eigenvalues af are real. potentially due to the diffusion poles are insensitive to finite-
Figures 6, 7, and 8 compare, for coupled inhibitory net-N fluctuations, the loww part of the spectrum is strongly
works, theoretical predictions to simulatiofdetails are in  affected: new peaks appear, at frequencies determined by the
the captions We remark that, as anticipated, finite-size fluc-imaginary part of the eigenvalues &f as a result of the
tuations do not affect the transient behavior of the networky-dependent term in Eq2.32, which captures the effects of
and Fig. 6 illustrates the excellent agreement between simuhe fluctuations of the reentering flux iy the latter, finiteN

FIG. 4. Poles distribution for a recurrent inhibitory population
h different coupling strengths in a drift-dominated regime. Dia-
monds: first four diffusion poless{?); circles: first three transmis-
sion poles (;E]‘)) (poles are complex-conjugate pairshe darker the
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FIG. 5. Poles distribution for a recurrent inhibitory population ~ F!G- 7. Power spectrum of the activity of a population of inhibi-
with different coupling strengths in noise-dominated regimes. Dia-lCTY Neurons in a stationary, drift-dominated regime: Simulations vs
monds: first four diffusion polessf®); circles: first four transmis-  tN€ory. The solid black line is the power spectrum from a 60-sec
sion poles (;(nt))_ Shading as in Fig. 4. The mean population emis_smulatloln; t.he thick gray line is the theorgtlcal 'pred!ctlon;.the
sion rate is kept avo=4 Hz. All the states are stable. Diffusion dashed I|_ne is the power spectrum of the white noise with variance
poles have a large spread in their imaginary parts, while the reafo/N: beingro=20 Hz andN=5000.
parts of the two classes of poles still move in opposite directions,
whend’ is varied. Despite the fact that the eigenvalued.afre ~ SOn fluctuations ofe, as introduced ifi9]. The new finiteN,
real in noise-dominated regimes, the diffusion poles are complexw-dependent part of the spectrum can overwhelm the purely
conjugates. diffusive part(this is the case for the network in Fig). Ve

further note that this lowws part of the spectrum becomes

low-frequency part of the spectrum disappears for a populalncreasingly relevant if a distribution of delays is introduced;
tion in a noise-dominated regime, since in this case the eil? fact, we checked(but do not show that the high-
genvalues ofl are purely realsee the discussion in Sec. frequency part oP(w) is more and more strongly damped
IIF2). as the distribution of delays becomes widsee Sec. Il FR

We emphasize that the low-peaks inP(w) are a quali- _ Figure 8 shows the power spectrum of the collective ac-
tatively different consequence of the finite-effects, with ~ tivity for an inhibitory population in a noise-dominated re-
respect to thew-independent termwy/N, which simply ~ 9ime. The eigenvalues df are in this case purely real, and

renormalizes the scale &), and would result from Pois- he power spectrum does not exhibit low-frequency peaks,
even if in principle one could have expected them, in con-

nection with the diffusion poles shown in Fig. 5; this means

25 : : : : ; ; . .
that, at least in this case, the numerator only of E432
determines the loww peaks in the spectrum.
20
i x10°
§ 151 1 j "
= 3.5¢f 1
> 10} - 3
ﬁ2.5
i 1 T
— 2
3
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FIG. 6. Transient response to a step change in the external emis 0.5
sion rate of a population of inhibitory neurons in a drift-dominated . .

regime: Simulations vs theory. Fox 0, the network is in an asyn- 10" 10° 10
chronous stationary state with mean emission ratd.2 Hz. Att w/2n (Hz)

=0, an instantaneous increase of the rate of external neurons, there-

after kept constant, drives the activity towards a new stable state FIG. 8. Power spectrum of the activity of a population of inhibi-
with =20 Hz. The solid black line is the mean of the activity from tory neurons in a stationary, noise-dominated regime: Simulations
10 simulations of a coupled netwo¢&000 inhibitory LIF neurons vs theory. The network parameters are the same as those of the
The thick gray line is the theoretical prediction, obtained from thewhite markers in Fig. 5. See Fig. 7 for details; in this cage

first four pairs of diffusion poles. =4 Hz andN=2000.

3
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~ (t) FIG. 10. Response times for a recurrent excitatory population
g 50 with different coupling strengths. The response times of the first

four diffusion poles(left) and four transmission polegight) are
plotted agains®'. The two types of poles have a different behavior
when the coupling strengttdirectly related tod®’) is increased:
The response time due to the diffusion poles is shortened, while the
opposite happens for the transmission pdlestice the different
scale$. See text for details.

type, but “explosive” in nature; now Ins{"=2mn/s. (ii)
The transmission poles have a very different dependence on

500 » ) the intensity of the interactionp’: For a wide range of
-600 -400 -200 0 values for®’ the characteristic times associated with the
Res (Hz) transmission poles remain essentially constant. We remark

o _ ~that the stability conditionb’ <1 is verified.

. Fo:(f;f 9. Poles ?,'St“b”t'on E’r a r?jc,‘]ft”sm ,exc't‘ztory F’Op“'ag‘?”' Figure 11 displays the power spectrum for the excitatory

or (; ?rTer?t fC.Ol:F;'ng d;gen_gt S 'ln %, 8 omllnat.eThre?umteti. '8 network. It is worth noting that in this case the “diffusion”

mondas. The firs ourt) iffusion poles{™); circ es. the first three part of the spectrum dominates over the “transmission” part.

transmission polessﬁ, ) (poles are complex-conjugate pairs with -

) ® ST . . The positions of the peaks are the :tfﬁ and Im\,, above.

the exception oy’ , which is real. See text and Fig. 4 for details. Ei 10 further ill he ch N

The transmission poles are shifted by a frequenrey/25 (5 . |gure_ urt ?r : _ustratest ec aract_erlgtlc times asso-
ciated with the diffusion and the transmission poles. One

=2 ms) with respect to the case of an inhibitory population. For the” “*=*~ | . .
different coupling strengths, the external current is adjusted in ordeflistinctive feature of the excitatory case is the very strong

to have the same stationary ratg=20 Hz. dependence of the longest time sc@ssociated witts{?),
on ®'; this point is further discussed in the following sub-

Comparing Figs. 8 and 7, it is apparent that the kow- section.

part of the power spectrum of the simulated network is in
excellent agreement with the theory in the case of the noise 025
dominated regime, while a discrepancy arises for the drift-
dominated caséwith respect to the width and height of the 02
peaks, while the resonant frequencies are still in good agree
men). The trough inP(w) for low w is reminiscent of the

effect of a refractory period on the power spectrum of thego'15
single neurongsee[10,41]); even if we assumed,= 0, this 5
does not exclude an effective refractory period possibly re-& 0.1
lated to the transport qi(v) along the intervalid, 8) in the

drift-dominated regime. 0.05
2. A network of excitatory neurons 0 . s
1 2 3
Figures 9-11 illustrate the stability scenario, the charac- 10 10 10
w/2m (Hz)

teristic times of the transient response, and the power spec-
tral density for a population of interacting excitatory neu- g, 11. Power spectrum of the activity of a population of
rons. From Fig. 9, two main differences are apparent, withcoupled excitatory neurons in a drift-dominated regime: Simula-
respect to the inhibitory caséi) The v, now has the first tions vs theory. The white noise varianeg/N is given by v
transmission pole on the real axis, which implies a different=20 Hz andN=1000. The coupling strength is such thét
nature of the transition to instability, no longer of the Hopf =0.6.
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FIG. 12. Transient responses to a stepwise stimulation of an FIG. 13. Power spectrum of an excitatory population in a drift-
excitatory population, for two different coupling strengths. The net-dominated regime, for different coupling strengths. For the same
work parameters are the same as two of the points in Figs. 9 and 1@etwork of Fig. 9, the power spectrum is shown for a weakly
The transient responses of a weakly coupldd £ 0.6, thin line coupled @’'=0.6, thin line@ and a strongly interacting '
and a strongly interactingd{’=0.95, thick ling network are  =0.95, thick ling network. The high-frequency part of the spec-
shown. Only the first four pairs of diffusion poles are used. Thetrum stays essentially unaffected, while the “diffusive,” low-
stimulation is given by an instantaneous increase of the emissiofrequency part shows appreciable changes. The white noise spec-
rate of external neurons & 0. The steady states of the population trum (dotted ling has variancery/N given by v,=20 Hz andN
before and after the stimulation are, respectively, 1 Hz and 20 Hz=1000.

D. A possible effect of learning IV. DISCUSSION

Figure 12 shows the theoretical prediction for the tran- The main purpose of the present work is to improve on
sient response of an interacting excitatory population whichS0me aspects of previous dynamical treatments of the popu-
starting from a stable state of low emission réteHz in the lation activity of a network of interacting neurons.
case showp undergoes a sudden jump in its external input, .V\/.e focused on the asynchrpnous colllectlve ngural stat_es;
which is then kept constant, making the global activity of thelliS iS not unreasonable, in view of typical cortical condi-
network converge to a steady state of higher acti@gy Ha). tions (particularly taking into account the ability of neural

For the same initial and final asymptotic average emissiorlri]nc’ddmetS to qlgicbklydreal_ct ;? sttimul?tic{(rji?%). On the othefr h
rate, we show in the figure how the value ®f affects the and, 1t would be desirablé 1o exten € coverage ot the

transient response: higher values ®f entail quicker re- dyg7mlcal s;:etnarlos offe_red he_ret';]o oth.erz.rt, g}!?ﬁ:”‘}/ Eﬁg)g(;r}/
sponse, and faster damping of the oscillatips2]. This is an or"non.s ationary regimes, in the spiri P :
) . ) , grams” derived in[7,9,13.

consistent with the stated dependence os®eon &', and P . . .
the fact thas® dominate the t ient We expand a bit in the following on possible experimental

eF act thaty, omlnka © h'e ran5|endrespons’e. i implications of the spectral analysis oft), comment on the
__roragiven networ/ architecture and neuron's parametergy o ioned “priming” effects related to synaptic modifica-
increasing values ob’ imply stronger recurrent couplings

as we expect to be brought about byearning procesgfor tions, and finally list some open problems.
example in a Hebbian learning scendr3,44)). This effect )
could have deep functional implications, and we elaborate A. Power spectrum and network properties
briefly on this point in Sec. IV. The predictions of the theory presented here about the
The spectral analysis, shown in Fig. 13, illustrates howpower spectruniP(w) of the collective activity, amenable in
besides the transient response, the effects of synaptic poteprinciple to experimental investigation, relate to quantities
tiation can be appreciated looking at the stationary activitysuch as thédistribution of delays(which could effectively
state. In particular, it is seen that the valuedof essentially  embody the effects of slow synaptic currefig), or the
affects only the “diffusion” part of the spectrum, leaving the pattern of synaptic couplings. One obvious difficulty in esti-
“transmission” part almost unchanged. mating theP(w) is that one should be able to get a reliable
From Fig. 13 we also see that the=0 component is estimate of the collective activity(t). An experimental
much higher for the higher value df’. Since in general the measure of the characteristic times of the transient response
height of each component in the spectrum is determined byf the network to abrupt variation in its inputs would provide
the real part of the corresponding pole, again we see heregh independent clue about essential features of the power
manifestation of the increasing’ bringing the network to-  spectrum(the diffusion poles While such a measurement
wards the stability boundary: Thef? pole in fact, which seems presently unfeasikitevivo, one can speculate on the
gives aw=0 contribution, is the one determining the stabil- possibility to perform itin vitro. Specifically, one could
ity of the network, and its real part is a decreasing functionimagine performing a long series of stepwise stimulations of
of @', as we discussed in relation to Fig. 9. a small neural population in a sli¢éor example, using mul-
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tielectrode arrays recording each time the activity of a small is the variety of noninstantaneous synaptic transmission
number of neurons; the set of multiple recorditgégned in  mechanisms of the presynaptic action potentials. Actually,
time) would provide an estimate of the transiesft) (such a  synaptic interactions are mediated by the diffusion of neu-
pooling strategy was explored in Ref,45 in a simple rotransmitters and the kinetics of post-synaptic receptors,
setting. Measuring the transient response this way could bevhose time constants and dynamics are quite well estab-
much easier than trying to estimate tbetionary network lished(see, for instance, Ref46]).

activity. Indications about the role of synaptic currents were given
On the other hand, especially in view of the characterizain Refs.[5,6,15 for drift-dominated regimes.
tion of the spectral content of the neural activity recorded In the mean-field framework, it has been suggested that

Vivo, it is tempting to consider the role of finite-size noise assynaptic time constants can be effectively considered as
a network’s self-probing signal, such that the frequency retransmission delays: In R€f9], the effects of the character-
sponse of the collective activity is exposed even in the abistic time scale of théinhibitory) synaptic current have been

sence of external stimulation tuned on purpose. illustrated through a study of the network’s state space.
Incorporating the effect of noninstantaneous synaptic cur-
B. Priming effects induced by “learning” rents has recently been the subject of several other efforts. In

f. [38], following th h pi d in R¢g],
We saw in simple cases how the characteristic times oEe 138], following the approach pioneered in R¢b], a

opulation density approach for the evolution of @ ,t)
the network response depend on the sldgeof the popula- g complemented by a dynamic equation for the avefige

tion gain function, and we mentioned that this can be viewed,jptory) synaptic conductand@ mean-field treatment of the
as a possible effect of “learning,” as long as the latter issynaptic transmissionIn Ref. [47], the population density
described as a sequence of synaptic modifications, affectingpproach is further extended to take into account both exci-
in turn . and o®. This is relevant in view of a scenario in tatory and inhibitory synaptic contributions, and the effects
which, for example, a series of neuronal modulesy a pro-  of their fluctuations, developing an effective dimensional re-
cessing chain from “sensory” to deeper arepsopagate in-  duction of the otherwise high-dimensional Fokker-Planck
formation along the chain, in such a way as to reflect theequation. Referencgt8] addresses the noise-filtering prop-
“familiarity” or “novelty” of a stimulus (a familiar stimulus  erties of the IF neuron’s output in connection with non-
eliciting a quicker responge negligible (but smal) synaptic time scales, and shows that
As a qualitative indication of the possible link between finite synaptic times bring about quicker neuron response to
successive stages of learning and the speed of the populati@mnsient changes in its input.
response to external stimuli, we mention the results of Ref. Much is still to be done in this respect, to characterize the
[34], in which in vivo recording in behaving monkeys per- behavior of the coupled network in differeriespecially
forming a delayed task showed a marked dependence of theise-dominatedregimes. As part of work in progress, we
latency of the response on the degree of “familiarity” of the plan to extend the approach described in the present paper to
stimuli. Figure 2C of Ref[34] shows clearly that the re- perturbatively take into account noninstantaneous synaptic
sponse to novel stimulito which to apply the already currents[49].
learned taskdrops after 200 trials to about 80% of its initial ~ The formalism illustrated in the present paper can in prin-
value. Though compatible with several possible explanaciple be applied to the widely used leaky IF neuron model.
tions, such experimental evidence is suggestive of a possibBuch application would be interesting in several respects: It
direct implication of the average synaptic potentiationwould provide a characterization of the phenomenology for
brought about by learning. the “default” model for biologically motivated modeling,
We remark that if one adopts a generic first-order dynammaking it easier to compare and contrast previous results.
ics for the ratev, v=f(v) (see[5,6] for approaches of this Besides, we formulated in the present paper some conjec-
type), given a fixed pointy,, such thatf(vy)=0, with sta-  tures(such as the fact that the eigenvalues of the Fokker-
bility condition f'(v,)<0, it is easy to see that the relax- Planck operator are purely real in noise-dominated regimes
ation time towg is — 1/f' (1), and the closer the system is to it would be interesting to check their validity for the leaky IF
the stability boundary, the longer is the relaxation time. Theneuron model.
opposite emerges from the present analysis. Whatever time Extending the treatment to the leaky IF neuron implies a
scale is plugged into the above naive dynamics, the sugechnical complication, essentially due to the fact that the
gested relation with stability is misleading: coming close toeigenvalues and eigenfunctions of the Fokker-Planck opera-
the stability boundary in fact makes the network respondor can only be expressed in terms of special functipasa-
faster, while the stability condition itself is determined by bolic cylinder functiong
poles whose typical characteristic times are much shorter,
and do not essentially affect the transient response. ACKNOWLEDGMENT
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